| F. (2.00) | |--| | ਰ | | a | | > | | 6 | | Š | | O. | | 100 | | S | | = | | 1 | | .01 | | - | | = | | 4 | | 190 | | ċ | | 5 | | 4 | | S | | | | 5 | | > | | 71 | | 1816 | | 5 | | 1237 | | 13 E | | C | | | | d | | 2 | | ř | | 1 Paris | | 1 | | - | | 6.0 | | Trans. | | 1000 | | 1 | | 165 | | 6 | | 500 | | 1200 | | 1,400 | | | | | | | | | | 1838 | | Binehart and Winston. All rights reserved. | | | | | | | | | Date | Class | |--|---|--| | lame | | | | Chapter 4 | , continued | | | Section 2: The Atom (p. 87) | particles inside the a | tom | | 1. In this section you will learn about the | hat act on the partic | les | | and the t inside the atom. | mat act on the pure | | | How Small Is an Atom? (p. 87) | hange the underlined | d | | Each of the following statements is faise. Con word to make the statement true. Write the | new word in the spa | ace | | provided. 2. A sheet of aluminum foil is about <u>500</u> | atoms thick. | | | 3. An Olympic medal contains about twe | nty thousand billion | 1 | | billion atoms of copper and zinc. | | | | Choose the term in Column B that best in Column A, and write the appropriate letter | | Column B | | | | | | | that has no | a. electron cloud | | 4. particle found in the nucleus | | a. electron cloudb. electron | | 4. particle found in the nucleus charge 5. particle found in the nucleus | | b. electron c. amu | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged | that is posi- | b. electronc. amud. nucleus | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal num | that is posi- | b. electronc. amud. nucleuse. proton | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal nun and electrons | that is posi-
nber of protons | b. electronc. amud. nucleuse. protonf. ion | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal nun and electrons 7. negatively charged particle for the nucleus | that is posi-
nber of protons
ound outside | b. electronc. amud. nucleuse. proton | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal nun and electrons 7. negatively charged particle for the nucleus 8. size of this determines the si | that is posi- nber of protons ound outside ze of the atom | b. electronc. amud. nucleuse. protonf. ion | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal numand electrons 7. negatively charged particle for the nucleus 8. size of this determines the sign contains most of the mass of | that is posi- nber of protons ound outside ze of the atom f an atom | b. electronc. amud. nucleuse. protonf. ion | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal nun and electrons 7. negatively charged particle for the nucleus 8. size of this determines the si | that is posi- nber of protons ound outside ze of the atom f an atom | b. electronc. amud. nucleuse. protonf. ion | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal nun and electrons 7. negatively charged particle for the nucleus 8. size of this determines the si 9. contains most of the mass of 10. SI unit used for the masses of | that is posi- nber of protons ound outside ze of the atom f an atom f afomic particles | b. electron c. amu d. nucleus e. proton f. ion g. neutron | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal numand electrons 7. negatively charged particle for the nucleus 8. size of this determines the simple contains most of the mass of the mass of the masses ma | that is posi- her of protons ound outside ze of the atom f an atom f afomic particles of Section 2, review vons in your ScienceL | b. electron c. amu d. nucleus e. proton f. ion g. neutron | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal numand electrons 7. negatively charged particle for the nucleus 8. size of this determines the simple contains most of the mass of the mass of the mass of the masses mass | that is posi- her of protons ound outside ze of the atom f an atom f afomic particles of Section 2, review v ons in your ScienceL | b. electron c. amu d. nucleus e. proton f. ion g. neutron | | 4. particle found in the nucleus charge 5. particle found in the nucleus tively charged 6. particle with an unequal numand electrons 7. negatively charged particle for the nucleus 8. size of this determines the simple contains most of the mass of the mass of the masses ma | that is posi- her of protons ound outside ze of the atom f an atom f afomic particles of Section 2, review v ons in your ScienceL | b. electron c. amu d. nucleus e. proton f. ion g. neutron | TECHNOLOGY | Truitle | Date | Class | |--|---------------------------------|-------| | Ch | apter 4, continued | | | 12. Neutrons in the atom's nucleus ke moving apart. True or False? (Circl | 1500 Maria | | | 13. If you build an atom using two protwo electrons, you have built an a | otons, two neutrons, and tom of | | | 14. An element is composed of atoms ———. (ne | | | | Are All Atoms of an Element the | | | - e that isotopes of an element - a. have the same number of protons but different numbers of 'neutrons. - **b.** are stable when radioactive. - **c.** share most of the same chemical properties. - d. share most of the same physical properties. ## Calculating the Mass of an Element (p. 92) | 16. | The weighted average of | the masses | of all | the naturally | occurring | |-----|---------------------------|------------|--------|---------------|-----------| | | isotopes of an element is | s called | | | mass | ## What Forces Are at Work in Atoms? (p. 93) Choose the type of force in Column B that best matches the phrase in Column A, and write the corresponding letter in the space provided. | Column A | Column B | |--|---| | 17. counteracts the electromagnetic force so protons stay together in the nucleus | a. gravity b. electromagnetic | | 18. depends on the mass of objects and the distance between them | force c. strong force | | — 19. plays a key role in neutrons changing into protons and electrons in unstable atoms | d. weak force | | 20. holds the electrons around the nucleus | | ## Review (p. 93) Now that you've finished Section 2, review what you learned by answering the Review questions in your ScienceLog.