

GCSE Scie	nce: <i>Biology</i>
------------------	---------------------

Name:	Date:

Diffusion, Osmosis and Active Transport Worksheet

This worksheet accompanies Diffusion.ppt, Osmosis.ppt and Active Transport.ppt

1. Which type(s) of transport is each statement true for? Add ticks to the correct boxes.

	Diffusion	Osmosis	Active Transport
A substance moves from an area of low concentration to an area of high concentration.			
Can happen in living cells.			
A substance moves and becomes more evenly spread out.			
The movement does not use energy and is caused by the random movement of individual particles.			
The movement requires energy from respiration.			
Only water is involved in this type of movement.			
Water moves from a less concentrated solution to a more concentrated solution.			

2.	Choose a word from the box at the bottom of the page to fill in the gaps in the
	sentences below. You can use words once, twice or not at all.

In animals, oxygen	into cells across cell membranes to be used						
	leout o	of cells.					
In plants, carbon dioxide diffuses into	cells to be used in						
Water enters the roots of plants by		moves into cells through					
permeable member	ranes, which allow small	molecules, such as water, to					
pass through, but not large molecule	S.						
Plants use a process called	to move mine	rals such as nitrates into					
root cells. This requires							
diffuses	ohotosynthesis	osmosis					

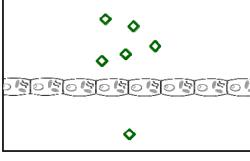
active

transport

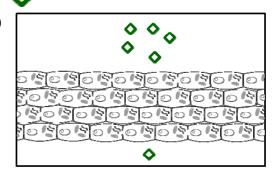
energy

partially

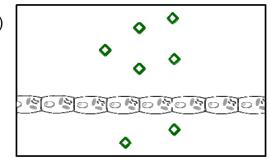
respiration

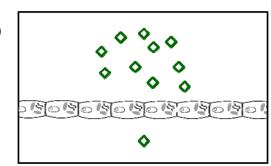


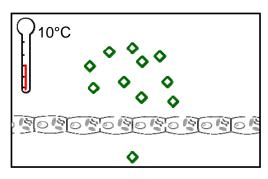
Name:	Date:

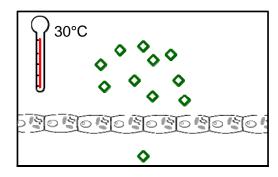

3. The diagrams below show substances at different concentrations, separated by a membrane. Out of each pair, say which one will have a faster diffusion rate, and explain why.

glucose =


a) i)

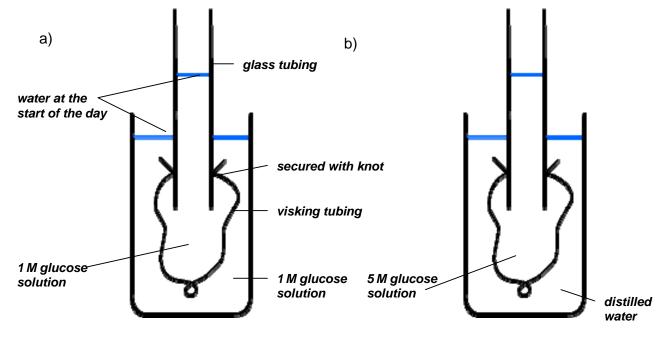

ii)

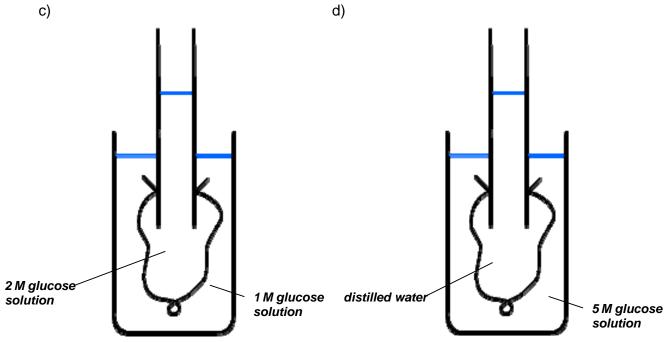

b) i)


ii)

c) i)

ii)

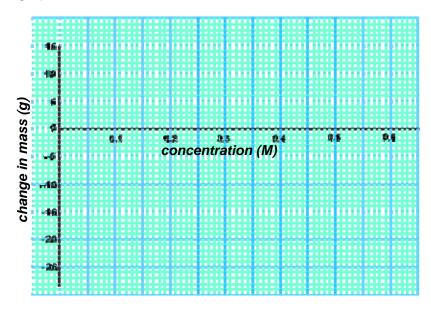




Name: Date:

4. The experiments below show visking osmometers, which are used to measure osmosis. Visking tubes are partially permeable.

The experiments below all involve different solutions. They were left for a day. The water level at the start of the day is shown. Mark on each diagram where you think the liquid levels will be after one day.



Name:	Date:	

5. A student set up an experiment to investigate osmosis in potatoes. He cut six chips which are approximately 5 cm × 1 cm × 1 cm and recorded the mass of each. He placed each chip in a sugar solution of a different concentration. After a day he recorded the mass of each potato chip again. His results are shown in the table below.

Glucose concentration (M)	Change in mass (g)
0.0	+10.2
0.1	+6.0
0.2	+1.9
0.3	-10.7
0.4	-16.1
0.5	-20.2

a) Draw a graph of these results.

ţ))	Exp	lain	why	the	mass	of t	he	pota	to c	hanged	during	the	experiment	

.....

c) i) What is the approximate concentration of a potato cell?

.....

ii) Explain your answer.

.....